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1 Tensor Products of Algebras and Homomorphism Groups

1.1 Tensor products of algebras

Let A,B,C be R-algebras, where R is a commutative ring. Let M and N be R-balanced
A-B and B-C bimodules, respectively.

Definition 1.1. An R-balanced bimodule M is a module such that rm = rm for all
r ∈ R,m ∈M .

This is equivalent to M being a A ⊗R Bop-module. Then M ⊗B N becomes an R-
balanced A-C bimodule:

a(m⊗ n) = am⊗ n, (m⊗ n)c = m⊗ nc.

We can also take tensor products of R-algebras, to get an R-algebra A⊗R B. We can
define this by

(a⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′.

Proposition 1.1. Multiplication is well-defined.

Proof. We want to construct A× B → EndR(A⊗R B) sending (a, b) 7→ ϕa,b = (a′ ⊗ b′ 7→
aa′ ⊗ bb′). To show that ϕa,b is well defined, we want a map A × B → A ⊗R B sending
(a′, b′) 7→ aa′ ⊗ bb′. By the universal property of the tensor product, we get a unique map
A⊗R B → A⊗R B, which we can set to be ϕa,b.

Now we want to show that our original map is bilinear. Check that

(ra1 + a2, b) 7→ ϕra1+a2,b = rϕa1,b + rϕa2 .

By the universal property, we get a map A⊗RB → EndR(A⊗RB) sending a⊗b 7→ (a′⊗b′ 7→
aa′⊗bb′). So then we get a map A⊗R×A⊗RB → A⊗RB sending (a⊗b, a;⊗b′) 7→ aa′⊗bb′.
So the operation is well-defined.
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Example 1.1. Let R be a commutative ring. Then R[x] ⊗R R[y] ∼= R[x, y] by specifying
(xi, yj) 7→ xiyj and extending this map to be bilinear. This map is surjective because we
get every monomial in R[x, y]. Since R[x, y] is free on the monomials xiyj , we can define
an inverse map defined by xiyj 7→ xi ⊗ yj .

Example 1.2. Let G be a group. The R-group ring of G, R[G], is the set of sums∑
g∈G ag[g], where ag ∈ R and ag = 0 for all but finitely many g. We can define multipli-

cation on this by extending the multiplication on monomials defined by [g] · [h] = [gh].

1.2 Homomorphism groups

Example 1.3. Let M,N be R-modules. Then HomR(M,N) is an R-module: Let φ, ψ ∈
HomR(M,N). Then we can define (rϕ)(m) := ϕ(rm) = rϕ(m) and (ϕ+ ψ)(m) = ϕ(m) +
ϕ(m). These are still R-module homomorphisms:

(rϕ)(m)(sm) = ϕ(rsm) = ϕ(srm) = sϕ(rm) = s(rϕ)(m)

for r, s ∈ R.

Remark 1.1. If M,N are A-modules, then HomA(M,N) is an R-module but not an
A-module.

Example 1.4. Let M be an R-balanced A-B bimodule, and let N be an R-balanced A-C
bimodule. Then HomA(M,N) is a B-C bimodule by defining

(bϕ)(m) := ϕ(mb), (ϕc)(m) = ϕ(m)c.

Check that everything is balanced.

HomA(·, ·) : A⊗R Bop-mod→ B ×A⊗R Bop-mod→ B ⊗R Cop-mod is a bifunctor.

HomA(M
∏
i∈I

Ni) ∼=
∏
i∈I

HomA(M,Ni).

HomA(
⊕
i∈I

Mi, N) ∼=
∏
i∈I

HomA(Mi, N).

Definition 1.2. If F is a field, and V is an F vector space, we can define the dual vector
space, V ∗ = HomF (V, F ).

1.3 Dual vector spaces

If we have a map f : V →W , we get a map f∗ : W ∗ → V ∗ defined by f∗(ϕ)(v) = ϕ ◦ f(v),
so V 7→ V ∗ is a contravariant functor from F -vector spaces to F -vector spaces.
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If V has basis v1, . . . , vn, then there is a dual basis ϕ1, . . . , ϕn of V ∗ given by

ϕi(vj) = δi,j =

{
1 i = j

0 i 6= j.

So V ∼= V ∗ if V is finite dimensional. This is not the case if V is infinite-dimensional.
The functor V 7→ V ∗∗ covariant. We get Φ : V → V ∗∗ given by Φ(v)(f) = f(v). Check

that Φ is F -linear.

Proposition 1.2. Φ : V → V ∗∗ is injective.

Proof. If Φ(v) = 0, then f(v) = 0 for all f ∈ V ∗; if v 6= 0, extend v to a basis B. Then
there exists fv ∈ V ∗ such that fv(v) = 1 and fv(w) = 0 for all w ∈ B with w 6= v. This is
a contradiction.

However, Φ is not always an isomorphism. If V =
⊕

i∈I , then V = Hom(
⊕

i∈I F, F ) =∏
i∈I Hom(F, F ) =

∏
i∈I F , which is bigger than V . So V ∗∗ will be even bigger.

Proposition 1.3. If W is finite dimensional over F , then HomF (V,W ) ∼= V ∗ ⊗F W via
f ⊗ w 7→ (v 7→ f(v)w).

Proof. W =
⊗n

i=1 Fwi. Then

V ∗ ⊗F
n⊕
i=1

F ∼=
n⊕
i=1

V ∗ ⊗F F ∼=
n⊕
i=1

V ∗ ∼=
n⊕
i=1

Hom(V, F ) ∼= Hom(V,

n⊕
i=1

F ).

This isomorphism is precisely the map you get from composing these isomorphisms.

1.4 Adjointness of Hom and ⊗

Theorem 1.1. Let A,B,C be R-algebras, and let M,N,L be R-balanced A-B, B-C, and
A-C bimodules, respectively. Then HomA(M ⊗B N,L) ∼= HomB(N,HomA(M,L)) as right
C-modules. Moreover, these are natural in M,N,L. In fact, we have tM : B⊗RCop -mod→
A⊗R Cop -mod

N M ⊗R N

N ′ M ⊗R N ′
λ idM ⊗Rλ

and hM : A⊗RCop -mod→ B⊗RCop -mod such that HomA(tM(N), L) ∼= HomB(N,hM (L))
is natural in N and L; i.e. tM is left adjoint to hM .

We will prove this next time.
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