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1 Tensor Products of Algebras and Homomorphism Groups

1.1 Tensor products of algebras

Let A, B,C be R-algebras, where R is a commutative ring. Let M and N be R-balanced
A-B and B-C bimodules, respectively.

Definition 1.1. An R-balanced bimodule M is a module such that rm = rm for all
re R,bme M.

This is equivalent to M being a A ® g B°°-module. Then M ®p N becomes an R-
balanced A-C bimodule:

a(m®n)=am®n, (m®n)c=m R nc.

We can also take tensor products of R-algebras, to get an R-algebra A ®r B. We can
define this by
(a®b) (d @) =ad @ bb.

Proposition 1.1. Multiplication is well-defined.

Proof. We want to construct A x B — Endr(A ®g B) sending (a,b) — @qp = (d' @V —
aa’ ® bb'"). To show that ¢, is well defined, we want a map A x B — A ®r B sending
(@', V') — aad’ @ bY'. By the universal property of the tensor product, we get a unique map
A®gr B — A®gr B, which we can set to be ¢ .

Now we want to show that our original map is bilinear. Check that

(Tal + a2, b) — ©Oraj+as,b = TPai,b T TPay-

By the universal property, we get a map AQpB — Endr(A®p B) sending a®b +— (a’ @b +—
aa’ @bl'). So then we get a map AQr xA®rB — A®pr B sending (a®b, a; @) — aa’ Q0.
So the operation is well-defined. O



Example 1.1. Let R be a commutative ring. Then R[x] ® g R[y] = R[x,y] by specifying
(x%,97) — 2’y and extending this map to be bilinear. This map is surjective because we
get every monomial in R[z,y]. Since R[z,y] is free on the monomials z'y’/, we can define
an inverse map defined by 'y’ — 2’ ® y7.

Example 1.2. Let G be a group. The R-group ring of G, R[G], is the set of sums
>_geG Aglg], where ag € R and ag = 0 for all but finitely many g. We can define multipli-
cation on this by extending the multiplication on monomials defined by [g] - [h] = [gh].

1.2 Homomorphism groups

Example 1.3. Let M, N be R-modules. Then Hompg(M, N) is an R-module: Let ¢, €
Homp(M, N). Then we can define (ry)(m) := p(rm) = reo(m) and (¢ + )(m) = p(m) +
©(m). These are still R-module homomorphisms:

(rp)(m)(sm) = p(rsm) = @(srm) = sp(rm) = s(re)(m)

for r,s € R.

Remark 1.1. If M, N are A-modules, then Hom4 (M, N) is an R-module but not an
A-module.

Example 1.4. Let M be an R-balanced A-B bimodule, and let N be an R-balanced A-C
bimodule. Then Hom 4 (M, N) is a B-C bimodule by defining

(bp)(m) := p(mb),  (pc)(m) = p(m)e.

Check that everything is balanced.

Hom4(+,+) : A®pg B°P-mod — B X A ®p B°®-mod — B ®z C°P-mod is a bifunctor.

Homy (M [ N;) = [ Homa (M, N;).
i€l el

Hom 4 (EP M;, N) = [ [ Homa (M;, N).
el i€l

Definition 1.2. If F is a field, and V is an F' vector space, we can define the dual vector
space, V* = Homp(V, F).

1.3 Dual vector spaces

If we have amap f: V — W, we get a map f*: W* — V* defined by f*(¢)(v) = ¢o f(v),
so V +— V* is a contravariant functor from F-vector spaces to F-vector spaces.



If V has basis vy, ..., vy, then there is a dual basis ¢1, ..., ¢, of V* given by

1 i=j

wi(v;) = 04 = {0 I

So V= V*if V is finite dimensional. This is not the case if V is infinite-dimensional.
The functor V' +— V** covariant. We get ® : V- — V** given by ®(v)(f) = f(v). Check
that ® is F-linear.

Proposition 1.2. & : V — V** s injective.

Proof. If ®(v) = 0, then f(v) = 0 for all f € V*; if v # 0, extend v to a basis B. Then
there exists f, € V* such that f,(v) =1 and f,(w) = 0 for all w € B with w # v. This is
a contradiction. O

However, ® is not always an isomorphism. If V' = @,;, then V' = Hom(P,.; F, F) =
[Lic; Hom(F, F') = [[;¢; F, which is bigger than V. So V** will be even bigger.

Proposition 1.3. If W is finite dimensional over F, then Homp(V,W) 2 V* @p W via
fRw— (v fv)w).
Proof. W = Q- Fw;. Then

n

V*®p éF o~ év* @ F év* = éHom(V,F) = Hom(V, ) F).
=1 =1 =1 1=1

i=1

This isomorphism is precisely the map you get from composing these isomorphisms. ]

1.4 Adjointness of Hom and ®

Theorem 1.1. Let A, B,C be R-algebras, and let M, N, L be R-balanced A-B, B-C, and
A-C bimodules, respectively. Then Homa(M ®p N, L) = Homp(N,Homu (M, L)) as right
C-modules. Moreover, these are natural in M, N, L. In fact, we havety; : BQrC°P -mod —
A ®p C°P-mod

N —— M®grN

JA iidM ®RA

N —— Mo N

and hyy 1 AQRCP -mod — BRprC°P -mod such that Hom 4 (tM(N), L) = Homp (N, hp (L))
1s natural in N and L; i.e. tyr is left adjoint to hyy.

We will prove this next time.
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